Páginas

terça-feira, 7 de abril de 2009

Base dez

O nosso sistema de numeração é decimal porque a organização e a representação do número recorre a agrupamentos de 10. Para facilitar as contagens, o homem começou por fazer grupos de 10, quem sabe, talvez, por influência do número de dedos que tinha nas mãos. Quando temos 10 grupos de 10 forma-se novo conjunto. Da mesma forma, quando se obtém 10 destes novos conjuntos de 10 grupos, tendo cada grupo 10 elementos, obtém-se um grande conjunto de 10x10x10 elementos, e assim sucessivamente.

Este padrão repetido infinitamente pode ser adaptado a um padrão geométrico que tomando qualquer um daqueles conjuntos como unidade, pode ser dividido de tal forma que cada uma das partes é semelhante à unidade inicial. Esta noção representada geometricamente leva-nos a um novo conceito geométrico mais abstracto que, à escala da história da matemática, poder-se-ia considerar ainda em fase de gestação – os fractais.

Mas a ideia dos agrupamentos de dez quero aproveitá-la para noções matemáticas mais concretas. Para ser mais claro, sugeria o exemplo de uma fábrica que produz caramelos. Nessa fábrica decide-se fazer conjuntos de 10 caramelos, em tubos, para poderem ser vendidos ao público. Imaginando que o sr. Rodrigo tem consigo 34 caramelos, logo, deve ter 4 tubos, 3 cheios e ainda outro com 4 caramelos. Também é fácil de perceber que pretendendo comprar 80 caramelos, vai ter que levar 8 tubos para casa. Fácil, não é?

No entanto, no armazém que vende a retalho, os lojistas não podem comprar tubos, mas sim caixas de caramelos. Cada caixa traz 10 tubos de caramelos. Compreende-se assim, que o sr, António precise de ter na sua loja 5 caixas para poder alojar 46 tubos de caramelos, 4 caixas cheias e mais uma com 6 tubos. Portanto, com 5 caixas poderá ter no máximo 50 tubos de caramelos.

O mesmo sucede com o retalhista. A unidade mais pequena que a fábrica vende é a embalagem com 10 caixas de caramelos. Assim, por exemplo, se houver 85 caixas de caramelos em armazém, são necessárias 9 embalagens, 8 cheias, e ainda mais outra com 5 caixas. Essas 9 embalagens serviram de transporte a 90 caixas de caramelos.

O leitor, com toda a razão, já deve estar a interrogar-se o que se pretende com toda esta explicação tão trivial. Na verdade, a forma como se conhece a organização dos números de acordo com o nosso sistema de numeração parece ser muito evidente. No entanto, como se poderá justificar a inquietação gerada entre educadores com ideias diferentes em relação a este problema em concreto? Trata-se do mesmo problema que levou toda a comunidade a comemorar dois anos consecutivos a passagem de milénio, precisamente por não haver consenso numa questão que afinal é tão evidente.

A dúvida surge numa questão muito concreta, num manual escolar do 1º ciclo. Pretende-se saber a que década pertence o ano 1978.

Eu próprio fiz a pergunta a várias pessoas de diferentes estratos sociais. É surpreendente o facto de se obterem várias respostas: (a) não sei, (b) é um ano que pertence aos anos setenta, logo é a sétima década, (c) oitava década, (d) 197ª década, (e) 198ª década. Afinal, em que ficamos?

Antes de o leitor também formalizar a sua opinião, talvez seja conveniente reflectir um pouco na organização dos caramelos. Poder-se-á estabelecer a relação entre os anos e os caramelos. Então quantos tubos (décadas) serão necessários para alojar 1978 caramelos (anos)? É fácil, não é?

terça-feira, 24 de março de 2009

Actividade matemática com engrenagens

Para além do envolvimento do aluno em actividades significativas, o professor de matemática também tem como objectivo elevar o grau de abstracção dos seus alunos.

As engrenagens com rodas dentadas são o exemplo de situações pouco exploradas, mas que têm um grande potencial em relação a várias áreas no domínio cognitivo. Para além da abstracção, promove o sentido espacial, o raciocínio lógico e poderão ainda ser usadas na exploração e apropriação de conceitos matemáticos que fazem parte do programa nacional do ensino da matemática.

Refiro-me concretamente ao desenvolvimento do pensamento algébrico onde a noção de proporcionalidade e o estabelecimento de relações numéricas têm um papel relevante. A exploração deste tipo de tarefas propicia a formulação de generalizações tendo por base a sistematização e a organização do próprio pensamento.

Por exemplo, numa engrenagem constituída por rodas dentadas, algo se pode concluir em relação ao número de eixos envolvidos na engrenagem e o movimento relativo da última roda em relação à primeira.

Outro estudo, de maior interesse, é encontrar a relação entre o número de voltas da última roda dentada por cada volta da roda que desencadeia o movimento da engrenagem.

No caso específico, que se segue, é fácil reconhecer que para obtermos o número de voltas da roda B enquanto A dá uma volta, é necessário encontrar o quociente entre o número de dentes da roda A e o número de dentes da roda B (A:B). Conclui-se que a roda B dá meia volta enquanto a roda A dá uma volta completa.


Analisando uma engrenagem com 4 rodas dentadas, como no exemplo da figura seguinte, poder-se-á recorrer a uma tabela cujo preenchimento recorre à noção de proporcionalidade.
Fazendo a leitura da última linha da tabela fica-se a saber que o eixo D dá 1,6 voltas por cada volta completa de C. Pode-se ainda constatar, pela análise da figura, que se estabelecem 3 relações entre os quatro eixos: 1º-2º eixo, 2º-3º eixo e 3º-4º eixo. Assim, uma outra forma de sistematizar estas relações pode ser da seguinte forma:











Com um pouco de dedicação e capacidade de análise, o leitor com certeza que vai aceitar o seguinte desafio apenas com uma ligeira diferença em relação aos anteriores. Imagine, por exemplo, uma engrenagem composta por 5 eixos de rotação, havendo duas rodas dentadas sobre o mesmo eixo.

Qual o sentido de rotação do eixo F? Enquanto E dá uma volta, F dá mais ou menos que uma volta? Ou será que também dá uma volta?

Se eventualmente for professor, ainda sugeria outro tipo de abordagem como orientação metodológica numa fase mais avançada. Dispondo de 3 rodas dentadas de 9, 12 e 36 dentes, proponha a construção de uma engrenagem de modo que, uma volta completa de um eixo origine, em um outro eixo, quatro voltas completas, mas rodando no mesmo sentido.

quinta-feira, 12 de março de 2009

A minha idade e a do meu avô - relações numéricas


Ortiga é uma povoação bem no centro de Portugal, próxima de uma barragem muito visitada, especialmente, pelos amigos da lampreia. Trata-se da Barragem de Belver. Foi na escola desta aldeia que há dias tive a oportunidade de assistir a uma aula muito interessante.

O professor estava consciente que seria uma grande surpresa se algum dos seus alunos conseguisse dar resposta à situação problemática proposta. No entanto, quando planeou aquela aula, o seu objectivo não era tanto a solução do problema, mas a possibilidade de os alunos poderem produzir matemática com interesse e motivação.

Em primeiro lugar esteve a interpretação do que foi apresentado e a análise da informação dada, criou-se espaço para a descoberta de regularidades e quase que se chegou a fazer generalizações. Foi mais um passo na capacidade de abstracção daqueles alunos.

Os alunos foram confrontados com algo de extraordinário que tinha sucedido em 1932. Nesse ano, o neto dizia para o avô que o número formado pelos dois últimos algarismos do ano em que nasceu era precisamente a sua idade. Nada de mais nesta constatação. O mais interessante é que o fenómeno que acontecia com o neto, também ocorria com o avô. O neto nem queria acreditar, mas rapidamente se rendeu à evidência demonstrada nos simples cálculos do seu avô. Afinal, que idades teriam eles?

O sincronismo das mentes daqueles alunos foi alcançado quando, depois de alguns palpites e de algum papel rasurado, juntamente com uma ou outra dica do professor surgiu uma tabela para organizar o pensamento.

A partir do ano 1932 foi feito o estudo sobre o que poderia acontecer se o nascimento do neto tivesse ocorrido nos anos imediatamente anteriores. Caso o nascimento fosse em 1931, então teria um ano, se fosse em 1930, teria 2 anos…


O aluno mais perspicaz foi ávido na constatação de que a soma dos números da coluna da direita (idade) e o número formado pelos dois últimos algarismos da data de nascimento era sempre 32. Então, os dois números (iguais) que se procuram resultam da divisão de 32 por 2, ou seja, 16. Fica descoberta a idade do neto.

Agora, todos estavam despertos para a descoberta do ano em que poderiam dizer que a sua idade seria igual aos dois últimos algarismos que formavam o ano do seu nascimento, bastava multiplicar por 2, esses algarismos. Um caso especial é um aluno que nasceu em 1998, 98x2=196

Também aqui se dá conta que o ano vai ser o de 96, mas do século seguinte. É a indicação dada pelo dobro de um número maior que 50. Neste caso, este aluno terá de esperar até ao ano 2096 para poder “casar a sua idade com ano do seu nascimento”. Mas este exemplo pode aclarar o nosso raciocínio para a descoberta da idade do avô. Seria um trabalho penoso continuar com a tabela até encontrar os números desejados. Aproveitando a regularidade descoberta, a idade do avô, no século anterior, vai ser o resultado da divisão de 132 por 2. Fazendo a verificação não ficam dúvidas que o avô em 1932 tinha 66 anos, sendo a sua data de nascimento em 1866.

Imagine-se agora que para tornar este problema num caso completamente excêntrico, o trisavô, caso fosse vivo, faria a mesma observação. Também neste caso, como é lógico, os dois últimos algarismos do ano em que nasceu eram os mesmos dois últimos algarismos da sua idade. Qual teria sido a data de nascimento do trisavô? E já agora, neste ano que decorre (2009), que idade poderá ser “casada” com o seu ano de nascimento?

sábado, 28 de fevereiro de 2009

Acerca da divisão

Tenho dado conta que alguns professores do 1º ciclo se têm deparado com algumas críticas em desfavor da sua prática relativamente a alguns procedimentos que não são os mais esperados por parte dos pais. São muitos os pais que, neste nível de ensino, ainda conseguem acompanhar os seus filhos nas tarefas escolares e, quando surgem procedimentos que divergem daquilo que é esperado, normalmente, ocorre alguma incompreensão na comunidade envolvente que coloca em causa o trabalho pedagógico-didáctico do professor.

De uma forma concreta serve de exemplo o algoritmo da divisão mais conhecido pela “conta de dividir”. No acompanhamento do percurso escolar dos seus educandos, muitos pais manifestam preocupação porque os seus filhos ainda não sabem fazer as “contas de dividir” tal como eram “receitadas” antigamente.

Será que importa mecanizar procedimentos sem que, no entanto, sejam compreendidos pela criança? Que importa o cumprimento das regras para fazer uma ”conta de dividir” se no final não existe capacidade de criticar o resultado? Será mais importante saber fazer o algoritmo com todo o rigor das regras impostas para a sua execução tradicional, ou conseguir prever se a divisão, por exemplo, de 0,25 por 0,125 é menor ou maior que um?

Tem-se o exemplo do aluno que recorre ao seguinte modelo para efectuar a divisão de 3476 por 23:

Um outro aluno utiliza o seguinte modelo:


Não será mais compreensivo o recurso ao primeiro modelo para aquele aluno que se inicia na técnica de fazer divisões? Haverá algum mal nisso? No primeiro modelo, o aluno sente-se, com certeza, mais seguro e mais confiante no resultado obtido. Julgo, portanto, não haver qualquer interesse em fazer pressão sobre o aluno para abandonar a representação das diferentes subtracções. Não deverá ser o próprio aluno a tomar essa decisão quando ganhar confiança para isso?

O importante é que a divisão seja realizada, independentemente da técnica utilizada para o efeito. Aliás, o ideal seria o aluno descobrir a sua própria técnica para efectuar uma divisão. Neste caso, sem dúvida, teríamos de estar satisfeitos, pois seria um sinal de que se tenha apropriado do conceito de divisão.

O apoio dos pais é sempre uma mais-valia no desenvolvimento da criança mas, se não estiver sincronizado com a escola, deixa de ser apoio e passa a ser uma menos-valia. Portanto, é necessário que estejamos mais sensíveis às orientações da escola, para poder estar com ela e não contra ela.

Imagine que o seu educando lhe apresenta o seguinte algoritmo para efectuar a divisão anterior:


Esta poderá ser uma outra técnica para aqueles menos desenvoltos no domínio da tabuada. Assim, o aluno pode ir construindo o quociente de acordo com a sua capacidade de cálculo mental, alongando ou reduzindo o algoritmo de acordo com as suas capacidades.

De que forma interpretaria o algoritmo para poder ajudar o seu educando a fazer a seguinte divisão: 8275,26:7,23?

segunda-feira, 16 de fevereiro de 2009

Paradoxos

Por vezes somos envolvidos em raciocínios de dedução lógica e acabamos por chegar a uma conclusão contraditória. Estas questões, na matemática, suscitam interesse em muitas pessoas dado a curiosidade e a unicidade que elas representam. Poderemos tomar como exemplo a seguinte frase: ”Eu nunca digo a verdade”. Admitindo a possibilidade da frase ser verdadeira, então estamos perante um mentiroso. Se é mentiroso, então a frase tem que ser falsa. Afinal, a frase é verdadeira ou falsa? Esta situação, parecendo uma frase bastante clara, induz-nos num raciocínio circular sem se poder opinar sobre a sua veracidade ou falsidade.

Há também um paradoxo muito conhecido de Russell que aproveito para destacar, o paradoxo do barbeiro:

Há em Sevilha um barbeiro que reúne as duas condições seguintes:
1- Faz a barba a todas as pessoas de Sevilha que não fazem a barba a si próprias.
2- Só faz a barba a quem não faz a barba a si próprio.

Duas condições que parecem ser tão evidentes que não colocam em causa a sua veracidade. Quando se pretende saber se o barbeiro faz ou não a barba a si próprio já não é bem assim. Não querendo ir contra a condição 2, o barbeiro não pode fazer a barba a si próprio. Mas se não faz a barba a si próprio, atendendo à condição 1, vai ter de fazer a barba a si próprio.

Mas, se a auto-alusão propicia o paradoxo, outras situações em que não se fala de si próprio pode originar igualmente situações paradoxais. Imagine um debate entre os dois representantes dos maiores partidos portugueses. A senhora Manuela F. Leite querendo ilustrar o carácter do seu adversário diz:

- O que você vai dizer de seguida não é verdade. A resposta do seu adversário, Sócrates, não tarda:

- É verdade o que a senhora acaba de dizer.

E neste caso? Querendo apurar quem diz a verdade, devemos tomar partido por quem? Pensando bem, a política não será também um paradoxo?

Os paradoxos, à semelhança das ilusões de óptica, deveriam ter um maior peso na educação matemática. A partir deles geram-se raciocínios de elevados níveis na tentativa de procurar os porquês dessas ilusões. Outro exemplo de uma ilusão, traduzido por palavras será iludir ou convencer o leitor que o contrário de uma afirmação falsa é uma afirmação falsa. Sei que não é fácil convencê-lo do que acabo de referir, faço votos também para que o meu professor de lógica não leia este artigo. Sabendo que não está de acordo comigo reflicta então num exemplo de Martin Gardner: ”esta frase tem seis palavras!”. Não há dúvidas sobre a sua falsidade desta afirmação. Mas, a sua frase contrária não me parece que seja verdadeira. Experimente contar as palavras na frase contrária: ”esta frase não tem seis palavras”.

Admitindo que já aqui fica matéria para reflectir, deixo ainda uma outra, com o objectivo de gerar discussão, controvérsia, argumentação, raciocínio mas que se chegue a bons entendimentos.

O gerente de uma loja de CD’s deu ordem à Cátia, funcionária da loja, para fazer uma promoção com os CD’s que não se vendiam. Assim foram criadas duas colecções de 30 CD’s cada uma. Numa das colecções, cada 3 CD’s são vendidos a 3€, na outra colecção o mesmo preço dava direito a dois CD’s. De acordo com as contas do gerente iria facturar na primeira colecção 10 x 3€ e na segunda 15 x 3€ esperando um total de 75€.

A Cátia, entusiasmada com a ideia, pensou que seria mais fácil e mais rápido a venda dos CD´s se fizesse grupos de 5 por 6€. E assim foi. Rapidamente apresentou as contas e explicou ao gerente a sua brilhante estratégia que resultou na venda rápida de todos os CD’s. Assim, 12 grupos de 5 CD’s a 6€ cada grupo, apurou 72€.

A Cátia nem queria acreditar como o gerente ficou irritado. Afinal, faltavam 3€. Cabe agora ao leitor, desvendar este mistério.

domingo, 8 de fevereiro de 2009

Noves fora, nada.


O título deste artigo é, com certeza, muito familiar aos leitores da minha geração. Uma das competências matemáticas que a nossa escola se propunha a desenvolver nos alunos, naquela altura, era saber aplicar a prova dos noves. No entanto, julgo que a maioria dos alunos não atribuía significado a esse procedimento. Na verdade, qual será o significado do “nada”? Numa pequena retrospectiva à nossa instrução primária, antes da revolução de Abril, é fácil recordar que os números 18, 27, 36, 45, 54, 63,… gozam desta particularidade – adicionando os seus algarismos dá nove, então: “noves fora, nada”.

Hoje, uma criança do 1º ciclo identifica estes números como sendo os da “tabuada do 9”. De facto são os múltiplos de nove. Isto quer dizer que se fizermos grupos de 9, no final, o resto é zero. É este o critério de divisibilidade por 9. Qualquer número cuja soma dos seus algarismos seja nove ou um múltiplo de nove, possibilita obter, com esse número, um número inteiro de grupos de 9. É o caso do número 4185 (4+1+8+5 são 18, e 1+8 são 9). Assim, outros números compostos com os mesmos algarismos gozam da mesma propriedade: 1485, 8415, 8541,… pois, divididos por 9, dão resto zero.

Estude-se agora o caso do número 19; 1+9=10, noves fora, 1. Repare-se que, com o número 19 fazemos dois grupos de 9 e ainda sobra 1. Então o significado deste 1 é o resto da divisão de 19 por 9. Assim, sabe-se imediatamente que o resto da divisão de 25567, por nove, é 7 (noves fora, “sete”).

Não querendo ser maçudo com esta questão dos noves, aproveito ainda para tentar perceber o que acontece quando subtraímos dois números da mesma classe de resto, módulo 9, isto é, números que divididos por 9 dão o mesmo resto. O número 57 e o número 30 servem de exemplo, divididos por 9, dão resto 3 (experimente tirar os noves). No caso de serem subtraídos, os seus restos anulam-se, sendo a diferença um número que é sempre múltiplo de 9. Fazendo a verificação, temos: 57–30=27; (2+7=9). Esta é uma propriedade dos números que, frequentemente, é usada em muitas curiosidades matemáticas aproveitando-se para dar um cariz mágico a esta ciência.

Como exemplo, pode pensar num número qualquer e subtraí-lo a outro número, desde que seja formado com os mesmos algarismos do anterior. A diferença obtida é sempre um múltiplo de 9. Imagine que peço para esconder um desses algarismos, desde que não seja o zero, e que me revele os restantes. Deve compreender que está a revelar o número escondido, ou não?

Mas todo este discurso não foi apenas para recordar procedimentos antigos. O meu objectivo é dar uma pista para facilitar a descoberta das idades de dois pais e dois filhos na figura de três pessoas – o neto, o pai e o avô.

O problema que proponho pode ser visto na sua versão original no livro Uma Paródia Matemática. A necessidade que tive em adaptar este problema, perdoe-me Brian Bolt, por o ter empobrecido, foi no sentido de lhe dar apenas a possibilidade de uma única solução.

Vamos então ao desafio: o ajudante de cozinha, Augusto, numa tentativa de prever o tempo que faltava para o seu chefe Artur se reformar, perguntou-lhe a idade. O Artur respondeu-lhe da seguinte forma:
- Invertendo os algarismos da minha idade obtém-se a do meu filho Bruno. A diferença das nossas idades é o triplo da idade do meu neto, que, por sua vez, tem um sétimo da minha idade.
O Augusto perguntou ainda: Terá sido pai adolescente?
- Muito longe disso, nem eu nem o meu filho fomos pais adolescentes, respondeu o velho Artur.

Afinal, quais são as idades do neto, do pai e do avô?

quarta-feira, 28 de janeiro de 2009

Dimensões A4

A folha de papel, de formato A4, garantidamente, nada tem a ver com uma empresa de automóveis alemã que produz Audis, aliás, com a mesma designação das folhas de papel que utilizamos mais vezes. A designação referente à letra, sabendo que não é por ser a inicial de Audi, poderá ser uma convenção para identificar aquele formato. No entanto, o número é que diferencia o tamanho das folhas.

Sabe-se que dobrando uma folha A4 obtém-se a folha A5. Esta correspondência permite deduzir que a área da folha A4 é o dobro da área da A5. Pela mesma razão se deduz que a folha A3 tem o dobro da área A4. Uma característica interessante e que merece referência é o facto do comprimento da folha ser sempre igual à medida da largura da folha imediatamente superior.
Outro facto interessante a ser observado, é que os diferentes formatos das folhas quando sobrepostas de tal modo que os seus lados maiores (p.e.) e os vértices correspondentes coincidam, implica que as suas diagonais fiquem sobre uma mesma recta.
Quer isto dizer que as folhas com os diferentes índices são semelhantes entre si.

Esta particularidade permite, nas fotocopiadoras, fazer ampliações e reduções sem haver qualquer desperdício de papel.

Também se verifica, por observação na primeira figura, que as medidas dos lados da folha de A0 e A4 estão numa razão de 4 para 1. Significa isto que os lados da folha A0 têm o quádruplo do comprimento dos lados da folha A4.

Penso que agora se possa deduzir o facto de se utilizar o valor 4 para definir o tamanho da folha. O quadrado desta razão de semelhança (4:1) é, portanto, a razão entre as suas áreas. Facilmente se comprova que a folha A0 é constituída por 16 folhas A4 (quatro ao quadrado).

Com um pouco mais de curiosidade matemática, estamos em condições de saber qual a área da folha A0. A partir do cálculo da área da folha A4, se multiplicarmos este valor por 16, obtemos um valor muito próximo do metro quadrado.

Assim, partindo-se do princípio que, (1) a folha A0 tem de ter um metro quadrado, (2) a divisão de qualquer folha pelo seu menor eixo de simetria origina duas folhas semelhantes à folha que lhes deu origem, só poderá haver uma única dimensão para a folha A4.

Sem medir os comprimentos dos lados, tente deduzir qual o comprimento e a largura da folha A4.



sábado, 17 de janeiro de 2009

Latas em progressão aritmética

Uma pesquisa sobre a biografia de Friedrich Gauss leva-nos a um interessante episódio com mais de 200 anos, sendo já uma importante referência na história da matemática. Conta-se que este prestigioso matemático alemão, ao começar a dar os seus primeiros passos académicos, surpreendeu o seu professor quando sujeito a uma actividade matemática que consistia em determinar a soma de todos os números inteiros de 1 a 100.

Sendo uma tarefa muito penosa para todos os seus colegas, Gauss muito rapidamente, colocou em cima da secretária do professor a sua ardósia com a conclusão da tarefa. Sentindo a necessidade de justificar a sua rapidez, explicou ao professor que a soma seria o valor do produto de 50 pares de números por 101. Assim surge o número 5050. Valor ao qual, os colegas se renderam depois de meia hora de trabalho.

O raciocínio daquele aluno baseou-se na observação de que 1+100 = 2+98 = 3+97 = 4+96 = …= 50+51 = 101. Portanto, bastava adicionar 50 pares de números com o valor de 101.

Será que o leitor também já se tinha apercebido desta curiosidade? Experimente aplicar o mesmo raciocínio para determinar a soma de outra qualquer sequência do mesmo tipo. Em matemática estas sequências são conhecidas por progressões aritméticas - o termo seguinte, resulta da soma do termo anterior com um qualquer número que deve ser constante. Um exemplo de uma progressão aritmética é: 9, 12, 15, 18… em que a constante é 3. Querendo adicionar os 6 primeiros termos (9 + 12 + 15 + 18 + 21+ 24), de acordo com a descoberta de Gauss, é o mesmo que ter 33 + 33 + 33 = 3 x 33 = 99.

Este é um bom exemplo de como a matemática pode ser uma boa ferramenta para nos facilitar o trabalho, que em princípio, parecia ser exaustivo. Assim, tivesse a rapariga do hipermercado conhecimento disso e também ela teria a vida facilitada. A rapariga a que me refiro é a Catarina, funcionária numa empresa que vende salsichas enlatadas. Nunca gostou de matemática, e agora tem que dar conta, ao seu patrão, do número exacto de latas que utilizou na exposição feita no hipermercado.

As latas foram empilhadas de tal forma que cada uma está assente noutras duas latas, o que faz com que cada camada tenha menos uma lata que a camada de baixo.

O trabalho realizado pela Catarina é uma “parede” construída com as latas de salsichas distribuídas por 16 camadas, em que a última camada, a do cimo, tem 16 latas. Já fez 3 contagens e encontrou 3 números diferentes. Desesperada, pediu ajuda a uma colega para fazerem uma nova contagem, entretanto, foi encontrado um novo número. A sua amiga rapidamente se descartou daquela tarefa justificando-se que nunca tinha sido boa aluna a matemática.

É certo que Gauss já não vai poder ajudar a Catarina, mas deixou-nos a maior riqueza que se pode herdar - o conhecimento. É com base nesse conhecimento que conto com a solidariedade do leitor para ajudar a Catarina a determinar o número exacto de latas que utilizou naquela construção.

domingo, 4 de janeiro de 2009

Comunicação matemática

A propósito da baixa de preços dos combustíveis, vários têm sido os comunicados a dar conta desse acontecimento. Mas com tantas baixas de preço, difícil é compreender como é que ainda só houve uma redução de cerca de 25% no preço do combustível, após ter atingido o seu valor máximo, quando a matéria-prima, sendo um factor determinante para o apuramento do preço ao consumidor final, (pelo menos sempre foi essa a justificação para o aumento do preço dos combustíveis), já desceu cerca de 70% em relação ao seu valor máximo.


Bom, mas isto é apenas um desabafo, o que me leva a escrever este artigo prende-se com a forma como são comunicados os novos valores do precioso líquido. Foram já vários os comunicados na rádio em que tive dificuldade na interpretação da comunicação. Será por se tratar de conteúdo essencialmente matemático?


Um dia destes ouvi na rádio, “a partir da meia-noite o combustível vai estar mais barato, sofre uma redução de zero, vírgula, zero, vinte e cinco cêntimos”. Quando não consigo atribuir significado a um número de euros, tenho a tendência para recorrer à moeda que ainda tenho como referência – o escudo, foi o caso. No entanto, o meu cálculo mental não foi suficientemente rápido para fazer a conversão. A jornalista adiantava: “o preço do litro do gasóleo passará a custar novecentos e quarenta e oito cêntimos”.


Fiquei ainda mais confuso. Afinal, trata-se de uma baixa de preço ou um agravamento substancial? Todos sabem que um euro ou cem cêntimos é a mesma quantia. Tratando-se de novecentos cêntimos, já nem quero saber do que vai para além disso, estão em causa, pelo menos, 9 euros.


Nem quero imaginar quando o preço do combustível possa chegar a esse valor. Faço votos, para que nessa altura, a dependência do gasóleo ou da gasolina seja a mesma como a que hoje temos em relação à água que corre no chafariz da aldeia.


Na comunicação social, torna-se evidente a falta de rigor da linguagem matemática, parecendo que a comunicação é perfeita, quando na verdade, é o receptor que a transforma, de acordo com a sua contextualização, naquilo que é previsível. Talvez seja esta a causa por haver necessidade de tantas rectificações orçamentais, principalmente quando envolvem grandes números. Só consigo compreender a coragem de ser feita uma comunicação deste teor, quando o comunicador fala de qualquer coisa para a qual não lhe atribui sentido.


É neste contexto, numa tentativa de percebermos o que é que falha nesta comunicação, que lanço o repto para uma análise mais cuidada. Pegando na frase que nos dá conta do abatimento do valor do combustível em “zero, vírgula, zero, vinte e cinco cêntimos”, ao certo, de quanto é este valor em escudos? Para facilitar os cálculos, considere por arredondamento, que um cêntimo equivale a 2 escudos. Recordo ainda que aquelas moedas, a que chamávamos “tostões”, eram necessárias 10 para obter um escudo. E que essas moedas, as mais antigas, ostentavam numa das suas faces o símbolo “X” e a palavra “centavos”.