quarta-feira, 24 de dezembro de 2008

Tabuada da multiplicação (com dedos)

Muitos professores do 1º ciclo têm reflectido na importância ou não, da insistência na memorização da tabuada.

Normalmente o que se decora acaba por ser esquecido, portanto, há um entendimento generalizado em dar prioridade à compreensão da tabuada em detrimento da sua memorização. A ideia que fica é que o aluno, em qualquer altura, consegue construir a tabuada não havendo portanto, a necessidade de a decorar.

No entanto, em níveis de escolaridade mais avançada os professores queixam-se dos alunos não saberem a tabuada. Esta situação impossibilita o desenvolvimento de outras técnicas de cálculo e exploração de novos conceitos matemáticos como sendo a equivalência de fracções, os múltiplos, os divisores, decomposição de números e outras inúmeras situações onde se pressupõe saber de imediato o produto de dois algarismos.

A questão da memorização, a meu ver, é uma actividade de especial importância na formação escolar. Talvez mais tarde ainda possamos ser apetrechados de chips que resolverão este problema. Mas até lá, vamos com certeza continuar a ter a necessidade de memorizar e, cabe à escola desenvolver no aluno, de acordo com a sua forma de pensar, a capacidade em descobrir as melhores técnicas que facilitem a sua memorização.

E porque a memorização requer um trabalho continuado, torna-se difícil a gestão do tempo face à ambição do próprio currículo escolar do aluno, com múltiplos tópicos matemáticos repletos de conceitos que vão pesando na responsabilidade do professor para fazer com que os seus alunos adquiram maior competência matemática.

Constata-se que a grande dificuldade na memorização da tabuada, na maior parte dos alunos, é a partir da tabuada do seis. É por isso que sugiro que se dê uma atenção especial a Édouard Lucas no seu livro, O jogo Militar. Segundo este autor, a cultura palestiniana e síria usam um algoritmo muito interessante que poderá ser um contributo valioso para que os nossos alunos aprendam a tabuada.

Partindo-se do princípio que o aluno não tem dificuldade em saber a tabuada até ao cinco, toda a outra tabuada se torna muito fácil. Assim, qualquer aluno poderá confirmar, de forma autónoma, o produto de dois números maiores que cinco e de um só dígito.

Tomemos como exemplo o produto de 7 por 8 (7x8). Basta representar o sete numa mão e o oito na outra mão. Dado que as mãos têm apenas cinco dedos, então recorremos aos dedos dos pés para ajudar nessa representação. Assim, tendo cinco dedos nos pés mais 2 dedos levantados na mão, será uma forma de representar o sete. Seguindo a mesma técnica não há dificuldade em representar o oito - três dedos levantados na mão.


Agora, é só adicionar os dedos “levantados”, 2+3=5, e juntar à direita deste, o produto obtido pelos dedos “deitados”, 3x2=6. Obtém-se assim 56 o que corresponde ao produto pretendido: 7x8=56.

Estou convicto que passando a olhar mais vezes para as mãos, este algoritmo que parece ser complicado no início, poderá entrar na rotina e, para além de ajudar a memorizar a tabuada, é um exercício que também desenvolve a abstracção do aluno e consolida outros conhecimentos a favor de outras novas técnicas de cálculo mental.

Repare que a soma dos dedos “levantados” corresponde ao número de dezenas, e o produto dos dedos “deitados” corresponde ao número de unidades. Estes dois valores adicionados dão sempre o resultado pretendido. Faço este reparo para que saiba aplicar o algoritmo quando pretende determinar 6x6 ou 6x7.

Fica agora a cargo do leitor perceber porque refiro estes dois casos especiais. Que técnica vulgarmente é usada nos nossos algoritmos que também aqui pode ser utilizada?

sábado, 13 de dezembro de 2008

Divisão por três

Numa ou noutra situação todos nós já fomos confrontados com a necessidade de um ajuste de contas (no verdadeiro sentido da expressão), onde se pretende fazer o acerto das despesas comuns.

Também três amigos, na preparação de um passeio, decidiram que o almoço seria leitão. Ficou combinado que cada um levaria a sua bebida e o Gustavo com a responsabilidade de levar o assado.

Acontece que o Gustavo só conseguiu comprar 700g de leitão, era o último leitão do dia. Sendo francamente insuficiente para 3 pessoas, o Gustavo decidiu telefonar ao Bernardo para comprar no hipermercado, perto da sua casa, mais 500g de leitão.

No dia do passeio, já no final do almoço, altura que escolheram para fazer o ajuste de contas, o Eduardo chegou à conclusão que teria de pagar 6€, uma vez que a despesa com o leitão foi de 18€. É nesta altura que se levanta o problema. O Gustavo e o Bernardo ficaram, naquele momento, sem saber como dividir os seis euros entre si. No entanto, os dois amigos acabaram por acordar que o Gustavo ficaria com 3,50€ e o Bernardo com 2,50€.

Segundo o raciocínio do Gustavo deveriam dividir o dinheiro tendo em conta a mesma proporção de leitão com que cada um contribuiu. Até porque o preço do quilograma do leitão foi o mesmo.
O Bernardo acaba por concluir que as contas até eram boas de fazer uma vez que se tratava de 1200 g de leitão e, o dinheiro que pretendiam dividir eram 6€. Assim, 500g vai corresponder a 2,50€, esclarece o Bernardo, prontificando-se a entregar de imediato ao Gustavo, a diferença que vai para os 6€.

Entretanto, no dia seguinte, quando o Eduardo tomou conhecimento de tal divisão reprovou veementemente aquela forma de pensar. Segundo as contas feitas por este amigo, que sempre foi respeitado pelas provas académicas dadas, o Bernardo teria que ainda dar ao Gustavo 1 euro.

De facto, após a explicação do Eduardo, os outros dois amigos acabaram por perceber como tinham errado no seu raciocínio. No entanto, não pareciam muito convincentes com o resultado obtido. Principalmente o Guilherme, tendo subscrito o raciocínio do Eduardo, repetiu várias vezes as contas à procura do possível engano.

Como seria possível esse raciocínio ser o mais correcto e, levar a um resultado que parece ser tão injusto - o Bernardo ficaria apenas com 1,50€ e o Gustavo com 4,50€?
Será que o leitor com toda a sua justiça matemática consegue encontrar explicação para esta justa divisão que o Eduardo defende?

quarta-feira, 3 de dezembro de 2008

Um problema de reflexão

Ainda me lembro dos meus tempos de estudante em como a matemática era uma disciplina que só poderia agradar aos “abstractos”. Refiro-me aos “abstractos” como sendo aqueles que, por diversas razões, tiveram oportunidades de passar por múltiplas experiências, ganhando elevados níveis de abstracção o que lhes garantia uma maior competência  matemática.
Nesse tempo era mesmo difícil gostar da matemática, era caso para dizer que a matemática era “intragável”. O aluno não via qualquer utilidade no estudo desta matéria. As propostas de trabalho eram áridas, pouco ou nada apelativas, conquistando apenas os “abstractos”, como é o caso do exemplo seguinte:
Encontre o ponto P da recta r de modo que o comprimento da linha poligonal [APB] seja a menor possível.

Convenhamos que se trata de uma tarefa para a qual o aluno poderá revelar pouco interesse em resolvê-la. Qual o objectivo? Qual o interesse em descobrir onde está o ponto P?
No entanto é uma tarefa muito rica, visto implicar vários conhecimentos matemáticos, como por exemplo a distância entre um ponto e uma recta, a noção de reflexão,  a perpendicularidade, a implicação e o manuseamento de material como o esquadro, a régua e o compasso.
Hoje o trabalho do professor a nível didáctico-pedagógico é muito mais exigente. Também tem que “saber vender” o seu produto. É por isso que tem de gastar algum tempo na preparação da estratégia de “venda” – processo que não é valorizado por aqueles que estão de fora. Para além da selecção ou produção da tarefa onde se pretende a apropriação de novas aprendizagens, também é necessário que o professor, quando propõe a tarefa, tenha a mesma preocupação que o chefe de cozinha - para além do paladar, primeiro tem que ser agradável à vista. É claro que isto não é tarefa fácil para o professor. Por vezes, a melhor ideia talvez acabe por nunca ocorrer apesar do tempo dedicado a essa causa.
Neste caso, tornar um pouco mais agradável a actividade poderia passar por transformar o ponto A na casa do aluno e o ponto B a casota onde se encontra o seu cão de estimação, sendo a recta r o rio que passa junto à quinta do aluno. Agora pretende-se que o aluno vá ao rio encher o balde para levar água ao rafeiro. Para que o aluno faça a menor distância possível em que lugar deverá apanhar a água no rio?
Será que agora também o leitor já ficou curioso em encontrar o ponto P? Se imaginarmos a casota do cão na outra margem do rio, com certeza que o balde deveria ser cheio no ponto de intersecção do rio com o caminho, em linha recta, até à casota do cão. Não haverá um ponto na outra margem que possa corresponder ao lugar da casota do cão? Será que esta dica poderá ajudar a encontrar o ponto P?