sábado, 25 de outubro de 2008

Um plano, três pontos

Alunos mais fracos na disciplina de matemática ainda tentam justificar o seu insucesso por não verem utilidade prática nesta área de estudo para o seu futuro. No entanto, nas actividades mais recreativas, estes mesmos alunos, embora não o reconhecendo, acabam por quantificar e aferir os procedimentos envolvidos tendo em vista o objectivo de seleccionar o vencedor.

É, portanto, premente levar esses alunos a reconhecer a importância da matemática nas actividades do dia-a-dia. É também importante o reconhecimento do significado que algumas ideias e conceitos matemáticos poderão ter, como também é fundamental que, às aprendizagens adquiridas, lhes sejam atribuídas aplicação prática, de modo a que o aluno se aperceba da necessidade da fundamentação teórica para apropriação do conhecimento matemático.

A exemplo do que é dito, uma pergunta que poderá surgir do aluno: qual o interesse em saber que um plano fica definido apenas por três pontos?

Na verdade, este conhecimento matemático terá algum interesse prático senão servir como premissa de suporte a novos conceitos? Não quererá o leitor pensar num argumento convincente em como este conhecimento terá implicação directa nalguma aplicação prática do quotidiano?

É de notar que do conhecimento popular é sabido que a melhor opção para uma mesa que não oscile, é ter apenas três pernas.

domingo, 19 de outubro de 2008

Problemas com moedas

A resolução de problemas é reconhecida universalmente como sendo um item fundamental e de especial relevância nas aprendizagens. É indiscutivelmente um processo que promove o desenvolvimento do raciocínio e a construção de processos cognitivos de nível superior, como seja conjecturar, testar, validar, reflectir…

Mesmo assim, o conceito de problema ainda hoje não converge no seio da comunidade educativa. Tanto que, são vários os investimentos por parte de alguns matemáticos que se empenham na melhor definição deste conceito. Mas, partilhando a ideia de que um bom problema, entre outras características, deve ser interessante, desafiador, sem resposta imediata, mas cuja resolução seja possível por parte do resolvedor, contudo, nem sempre é possível reunir todas elas, pois existe uma comunidade de resolvedores muito heterogénea.

Serve de exemplo um problema de Brian Bolt, matemático que muito tem contribuído para motivar o interesse pela matemática. Trata-se de um problema desafiador que, caso o leitor já o conheça, deixará de ser um desafio, e por conseguinte, perderá algum do seu interesse natural.

“Disponha de oito moedas, como se indica na figura formando um quadrado com três moedas em cada lado.


Agora desloque quatro moedas para formar um quadrado com quatro moedas em cada lado!”

Por favor não continue a leitura enquanto não pensar um pouco na resolução do problema.

Este problema é normalmente classificado como sendo de tipo puzzle – não necessita de grandes conhecimentos para ser resolvido, a solução pode surgir num clique, a tal Eureka!

A disposição das moedas apresentada já é algo interessante e até poderia servir de solução a outro problema onde fosse necessário formar 8 soldados em 4 filas havendo apenas 3 soldados em cada fila.

O que poderia parecer impossível, por falta de 4 soldados, afinal, torna-se de fácil resolução se 4 soldados puderem ser contados duas vezes. Assim a disposição em quadrado, como na figura, seria a solução. O soldado que fica no vértice do quadrado será contado duas vezes.

A partir desta experiência torna-se mais fácil a descoberta da solução do problema proposto. Também neste caso para se obter um quadrado com 4 moedas em cada lado, e dispondo apenas de 8 moedas, só nos resta dispô-las de tal forma que cada moeda possa ser contada duas vezes, isto é, cada moeda tem que estar simultaneamente em dois lados.

Assim, basta deslocar as 4 moedas que se encontram no meio de cada lado e sobrepô-las nas moedas que formam os vértices. Temos assim 4 moedas em cada lado num quadrado formado por oito moedas. Interessante, não é?! Quando se sabe, é fácil!

Mas, tão fácil como esta resolução é também uma outra para o problema que apresento de seguida. Na minha opinião, trata-se de um problema dos mais fascinantes devido à facilidade com que pode ser resolvido mas, à primeira vista, parece ser impossível de resolver.

Imagine-se na situação de um condenado à morte que apenas tem uma só noite até à sua execução. Na masmorra onde está preso não entra qualquer luz. Os soldados visitam-no pela última vez para lhe transmitirem a decisão que o imperador tomou por influência do povo, uma vez que sabiam que você era um bom resolvedor de problemas.

Um soldado lê o comunicado: como podes verificar, ficam aqui na mesa 40 moedas. Apenas 18 destas moedas estão viradas com a cara para cima. Se amanhã quando te viermos buscar, as moedas estiverem divididas em 2 grupos, de forma que os 2 grupos tenham o mesmo número de moedas com a cara virada para cima, então, não serás executado.

Os soldados saem, fecham a porta, e fica completamente escuro sem ter qualquer possibilidade de ver as moedas.

O que faria para não ser executado?

Nota: O desgaste das moedas não lhe permite através do tacto identificar a cara ou a coroa da moeda. Caso não encontre a solução de imediato, sugiro que tente reduzir o problema a uma situação mais simples simulando-o com poucas moedas.


sexta-feira, 10 de outubro de 2008

Números primos

Não é novidade para ninguém, o facto de haver números primos. Pelo menos na escola já ouvimos falar em tais números. Grande parte das pessoas não se lembra o que estes números têm de especial para que justifiquem o nome de “primos”. De facto, são tão especiais que se tivermos um número primo de pessoas não as conseguimos dividir em grupos com o mesmo número de elementos, tendo em conta que, cada grupo deverá ficar com pelo menos duas pessoas.

Na matemática diz-se que o número primo só admite dois divisores: o um e ele próprio. Também no universo dos números naturais o primeiro primo tem uma característica que mais nenhum tem – é par, todos os outros são ímpares. Porque será?

Procurando então os números que não se deixam dividir por outro número senão por um e por ele próprio, temos: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89

Para além da decomposição de um número em factores primos, que se aprende na escola, será interessante constatar que qualquer número par (excepto o dois) é a soma de dois números primos. Este poderá ser um desafio interessante: descobrir um número par, maior que dois, que não seja a soma de dois números primos. É garantido que se o leitor descobrir esse número (é possível que isso aconteça uma vez que ainda ninguém conseguiu demonstrar o contrário), o seu nome vai ficar na história da matemática mesmo que ainda não tenha ganho grande afinidade com esta ciência. Esse feito iria conseguir refutar a conjectura que já dura quase há 300 anos cujo autor é Christian Goldbach.

Mas, se isso der muito trabalho pode ainda procurar fama na descoberta de um processo que produza a sequência de números primos. Por exemplo, a partir da sequência de números primos acima apresentada, como poderemos descobrir o próximo número primo (97)?

Para facilitar o trabalho posso adiantar uma particularidade que se verifica neste tipo de números: se a qualquer número primo maior que 3, retirarmos um e dividirmos por seis e não der resto zero, então adicionamos um e dividido por 6 dá de certeza resto zero. Será que esta regularidade acontece com todos os números primos? Isto é, qualquer número primo (excepto o 2 e o 3) existe na forma 6n±1?

Também se pode constatar que existem números primos na forma 4n+1. Da nossa lista destacam-se: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89. Estes números têm a particularidade de serem a soma de números quadrados: 5=1+4, 13=4+9, 17=1+16, 29=4+25, 37=1+36… Será que é sempre assim? Isto é, qualquer número primo na forma 4n+1 é a soma de dois números quadrados?

Para além destas particularidades dos números primos também se constata que entre números quadrados consecutivos existe sempre pelo menos um número primo. Pelo menos na lista dos números primos menores que 100, não há dúvidas que isso aconteça: 1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97… Será que é sempre assim?

Parece-me que estas particularidades nestes números podem ajudar na descoberta de novos números primos… então, mãos à obra! E, já agora, consegue descobrir os números que estão escondidos pelas letras A, B, C, e D no esquema seguinte?


quarta-feira, 1 de outubro de 2008

Pitágoras, não só para quadrados

É do conhecimento profissional do pedreiro fazer uma esquadria sem que no entanto tenha um esquadro. Quando confrontei um pedreiro meu amigo com esta situação, de imediato referiu: “60, 80 e 100 é quanto preciso para fazer uma esquadria”.

No entanto, ficou surpreendido ao saber que os pedreiros de antigamente conseguiam a mesma proeza mas, sem fita métrica. Uma corda seria o bastante para traçarem duas linhas perpendiculares para que, a partir daí construíssem duas paredes a fazerem entre si 90 graus. A técnica consistia em dar nós na corda à mesma distância uns dos outros de modo a obter doze comprimentos iguais.



Depois bastava formar com a corda um triângulo de modo a ter nos lados 3, 4 e 5 unidades de comprimento. O maior ângulo do triângulo que se obtém é de 90 graus. Trata-se, portanto, de um triângulo rectângulo.

É interessante a observação que esse meu amigo fez sobre a relação entre estes números e os que ele utiliza. Ele próprio disse: “ eu estava a pensar em centímetros mas, se considerarmos decímetros é o mesmo que 6, 8 e 10 que são precisamente os dobros do trio 3, 4 e 5”. Também o terno 9, 12 e 15 dá origem a um triângulo rectângulo a diferença está apenas nas suas dimensões.

Aos conjuntos de três números com a particularidade de expressarem as medidas de um triângulo rectângulo são conhecidos por ternos pitagóricos, dado que, a soma dos quadrados dos lados menores (catetos do triângulo) é igual ao quadrado do lado maior (hipotenusa do triângulo). A interpretação geométrica pode ser traduzida pela seguinte figura:
Fica então o desafio para a descoberta de outros ternos pitagóricos que não sejam múltiplos dos anteriores nem dos do exemplo seguinte: 8, 15 e 17 [8^2+15^2=17^2]

Mas, o produto de um quadrado pelo nobre irracional transcendente “pi” dá origem a um círculo cujo raio é o lado desse quadrado. Então, na igualdade de Pitágoras, neste caso, 3^2+4^2=5^2 podemos criar uma nova igualdade com um novo significado: pi3^2+pi4^2=pi5^2

Se os lados do triângulo rectângulo forem raios de círculos, poder-se-ão relacionar de acordo com a descoberta de Pitágoras. Assim, pode-se concluir que a área do semicírculo construído sobre a hipotenusa de um triângulo rectângulo é igual à soma dos semicírculos construídos sobre os seus catetos. Interpretando esta frase geometricamente, temos: a = b + c

Então, que relação se pode estabelecer entre as lúnulas x, z e o triângulo y?