Páginas

sábado, 22 de novembro de 2008

Entre o possível e o impossível - as ilusões.

Com certeza que já ouviu dizer que uma imagem vale mais que mil palavras. Também um bom exemplo pode evitar muitas palavras quando se pretende transmitir uma ideia matemática. No entanto, pior que a falta de um exemplo poderá ser um mau exemplo.

E quando se trata de um bom exemplo que parece ser um mau exemplo? Não tenho dúvidas que a dúvida resiste.

É o exemplo da figura que se segue que pretende ser o exemplo de duas figuras geometricamente iguais, isto é, se as figuras forem sobrepostas elas coincidem ponto por ponto.

imagem retirada de Perelman,Yakov. Experiências e Problemas Matemáticos Recreativos II. EDITEC

Acredita que estas duas figuras são geometricamente iguais? Claro que não. Uma até parece ser mais larga e curta que a outra. Mas, de facto elas são geometricamente iguais. Faça a experiência, copie, recorte, sobreponha-as e verá que coincidem. Extraordinário como o nosso cérebro tem tendência para ver apenas aquilo que está habituado a ver.

Sem dúvida que estamos perante uma ilusão óptica, sensações que os especialistas tentam justificar a partir das nossas estruturas oculares e mentais e também como elas se combinam.

Esta faculdade do Homem se enganar sobre as suas sensações visuais permite a valia da arte enquanto apreciadores das mais variadíssimas expressões artísticas que, caso a visão fosse completamente perfeita, não iria conseguir percepcionar as suas representações.

Penso que a figura seguinte é um bom exemplo do que acabo de dizer. Há a tendência para ver os círculos da direita afundados e os da esquerda salientes. No entanto, se virar as figuras ao contrário, com certeza que vai mudar de opinião. Aliás, a figura da direita é a mesma da esquerda, apenas foi invertida.


Experimente agora fazer um teste para verificar se realmente o seu cérebro está a ver o que realmente deverá ver. Na verdade deveria ver circunferências. No entanto, só vai acreditar no que não vê se, por exemplo, passar com um lápis sobre as linhas.


imagem retirada de Perelman,Yakov. Experiências e Problemas Matemáticos Recreativos II. EDITEC


Mas não é caso para se assustar, há quem fique ainda mais baralhado. O vídeo que se segue, inspirado nas ilusões de M. C. Escher, é um trabalho magnífico que testemunha o que acabo de dizer.



1 comentário:

Pena disse...

Lindo!! Já conhecia os desenhos de Escher que adoro mas não conhecia nenhuma animação.

Obrigada.