quarta-feira, 3 de dezembro de 2008

Um problema de reflexão

Ainda me lembro dos meus tempos de estudante em como a matemática era uma disciplina que só poderia agradar aos “abstractos”. Refiro-me aos “abstractos” como sendo aqueles que, por diversas razões, tiveram oportunidades de passar por múltiplas experiências, ganhando elevados níveis de abstracção o que lhes garantia uma maior competência  matemática.
Nesse tempo era mesmo difícil gostar da matemática, era caso para dizer que a matemática era “intragável”. O aluno não via qualquer utilidade no estudo desta matéria. As propostas de trabalho eram áridas, pouco ou nada apelativas, conquistando apenas os “abstractos”, como é o caso do exemplo seguinte:
Encontre o ponto P da recta r de modo que o comprimento da linha poligonal [APB] seja a menor possível.

Convenhamos que se trata de uma tarefa para a qual o aluno poderá revelar pouco interesse em resolvê-la. Qual o objectivo? Qual o interesse em descobrir onde está o ponto P?
No entanto é uma tarefa muito rica, visto implicar vários conhecimentos matemáticos, como por exemplo a distância entre um ponto e uma recta, a noção de reflexão,  a perpendicularidade, a implicação e o manuseamento de material como o esquadro, a régua e o compasso.
Hoje o trabalho do professor a nível didáctico-pedagógico é muito mais exigente. Também tem que “saber vender” o seu produto. É por isso que tem de gastar algum tempo na preparação da estratégia de “venda” – processo que não é valorizado por aqueles que estão de fora. Para além da selecção ou produção da tarefa onde se pretende a apropriação de novas aprendizagens, também é necessário que o professor, quando propõe a tarefa, tenha a mesma preocupação que o chefe de cozinha - para além do paladar, primeiro tem que ser agradável à vista. É claro que isto não é tarefa fácil para o professor. Por vezes, a melhor ideia talvez acabe por nunca ocorrer apesar do tempo dedicado a essa causa.
Neste caso, tornar um pouco mais agradável a actividade poderia passar por transformar o ponto A na casa do aluno e o ponto B a casota onde se encontra o seu cão de estimação, sendo a recta r o rio que passa junto à quinta do aluno. Agora pretende-se que o aluno vá ao rio encher o balde para levar água ao rafeiro. Para que o aluno faça a menor distância possível em que lugar deverá apanhar a água no rio?
Será que agora também o leitor já ficou curioso em encontrar o ponto P? Se imaginarmos a casota do cão na outra margem do rio, com certeza que o balde deveria ser cheio no ponto de intersecção do rio com o caminho, em linha recta, até à casota do cão. Não haverá um ponto na outra margem que possa corresponder ao lugar da casota do cão? Será que esta dica poderá ajudar a encontrar o ponto P?


Sem comentários: