Páginas

quarta-feira, 12 de novembro de 2008

Divisão de unidades indivisíveis

Malba Taban, pseudónimo do professor e autor brasileiro Júlio César de Mello e Souza, falecido no ano em que nós, Portugueses, conquistámos a nossa liberdade de expressão(?), deixa-nos uma panóplia de fábulas matemáticas dando vulto àquilo que ainda muitos de nós deprecia. Um bom exemplo é o seu livro “O homem que sabia contar”, onde, entre muitas histórias, relata uma que destaco precisamente por conseguir glória no seio das tertúlias dos nossos avós. Prepare-se então para poder também participar num assunto que, lamentavelmente, já não serve de tema nas tertúlias de hoje.

Segundo reza a história, durante uma calorosa discussão entre três irmãos, eis que surgem dois amigos montados num camelo que não conseguiram evitar uma paragem para apaziguar tal discussão. A falta de entendimento entre aqueles homens devia-se ao facto de não conseguirem fazer a divisão da herança de seu pai – 35 camelos. Não havia forma de chegarem a um consenso.

Segundo a vontade expressa do falecido, metade da herança seria para o seu filho mais velho, uma terça parte para o filho Hamed e, finalmente, para o filho mais novo, Harim, resta a nona parte da herança.

O filho mais velho reclama, pois, 18 camelos, uma vez que metade de 35 são 17,5. Esta pretensão não foi aceite pelos outros irmãos, dado que o mais velho já leva a maior parte da herança. Hamed tendo direito a uma terça parte, 11 camelos e ainda mais de metade de outro, com toda a justiça acha que deve ficar com 12 camelos. Mas, Harim discorda completamente porque segundo a vontade de seu pai a nona parte da herança são quase 4 camelos. Dado ser ele o que menos recebe, então o mais novo reclama para si o benefício do arredondamento à parte inteira mais próxima.

É nesta altura que intervém Beremiz - o homem que sabia contar, dizendo que o que mais o incomoda é ver 3 irmãos a discutir um problema que é dos mais simples de resolver. Contra a vontade do seu companheiro de viagem, Beremiz fez questão em juntar à herança também o camelo em que eles se deslocavam, ficando, assim, 36 camelos para repartir pelos três irmãos.

Impávidos e já mais serenos, acreditando que se tratava de obra divina o aparecimento e a bondade de tal criatura, os três irmãos aceitaram que fosse Beremiz, com justiça, a fazer tal divisão.

Não havendo dúvidas que metade do conjunto de 36 camelos são 18, Hamed e Harim deixaram partir o seu irmão mais velho com o número de camelos que antes reclamara. Também Hamed ficou satisfeito, dado que uma terça parte de 36 era precisamente aquilo que ele pretendia, 12 camelos. Por fim, também Harim não se pode queixar, uma vez que a nona parte da nova herança dava-lhe direito a que ficasse com 4 camelos.

Concluindo, todos os irmãos saíram a lucrar com aquela divisão 18 + 12 + 4, fazendo um total de 34 camelos. Perante este facto o companheiro de viagem de Beremiz nem queria acreditar como era possível aquele entendimento e agora poderem prosseguir a sua viagem montados cada um em seu camelo.

Antes que o leitor se envolva também numa situação semelhante, sugiro que não se precipite em juntar o seu automóvel a uma possível herança. Em primeiro lugar reflicta sobre o sucedido neste caso dos camelos de modo a encontrar uma explicação para o ocorrido. Só assim ganhará o poder de se transformar também num Homem que sabe contar!


Sem comentários: