Tenho dado conta que alguns professores do 1º ciclo se têm deparado com algumas críticas em desfavor da sua prática relativamente a alguns procedimentos que não são os mais esperados por parte dos pais. São muitos os pais que, neste nível de ensino, ainda conseguem acompanhar os seus filhos nas tarefas escolares e, quando surgem procedimentos que divergem daquilo que é esperado, normalmente, ocorre alguma incompreensão na comunidade envolvente que coloca em causa o trabalho pedagógico-didáctico do professor.
De uma forma concreta serve de exemplo o algoritmo da divisão mais conhecido pela “conta de dividir”. No acompanhamento do percurso escolar dos seus educandos, muitos pais manifestam preocupação porque os seus filhos ainda não sabem fazer as “contas de dividir” tal como eram “receitadas” antigamente.
Será que importa mecanizar procedimentos sem que, no entanto, sejam compreendidos pela criança? Que importa o cumprimento das regras para fazer uma ”conta de dividir” se no final não existe capacidade de criticar o resultado? Será mais importante saber fazer o algoritmo com todo o rigor das regras impostas para a sua execução tradicional, ou conseguir prever se a divisão, por exemplo, de 0,25 por 0,125 é menor ou maior que um?
Tem-se o exemplo do aluno que recorre ao seguinte modelo para efectuar a divisão de 3476 por 23:
De uma forma concreta serve de exemplo o algoritmo da divisão mais conhecido pela “conta de dividir”. No acompanhamento do percurso escolar dos seus educandos, muitos pais manifestam preocupação porque os seus filhos ainda não sabem fazer as “contas de dividir” tal como eram “receitadas” antigamente.
Será que importa mecanizar procedimentos sem que, no entanto, sejam compreendidos pela criança? Que importa o cumprimento das regras para fazer uma ”conta de dividir” se no final não existe capacidade de criticar o resultado? Será mais importante saber fazer o algoritmo com todo o rigor das regras impostas para a sua execução tradicional, ou conseguir prever se a divisão, por exemplo, de 0,25 por 0,125 é menor ou maior que um?
Tem-se o exemplo do aluno que recorre ao seguinte modelo para efectuar a divisão de 3476 por 23:
Um outro aluno utiliza o seguinte modelo:
Não será mais compreensivo o recurso ao primeiro modelo para aquele aluno que se inicia na técnica de fazer divisões? Haverá algum mal nisso? No primeiro modelo, o aluno sente-se, com certeza, mais seguro e mais confiante no resultado obtido. Julgo, portanto, não haver qualquer interesse em fazer pressão sobre o aluno para abandonar a representação das diferentes subtracções. Não deverá ser o próprio aluno a tomar essa decisão quando ganhar confiança para isso?
O importante é que a divisão seja realizada, independentemente da técnica utilizada para o efeito. Aliás, o ideal seria o aluno descobrir a sua própria técnica para efectuar uma divisão. Neste caso, sem dúvida, teríamos de estar satisfeitos, pois seria um sinal de que se tenha apropriado do conceito de divisão.
O apoio dos pais é sempre uma mais-valia no desenvolvimento da criança mas, se não estiver sincronizado com a escola, deixa de ser apoio e passa a ser uma menos-valia. Portanto, é necessário que estejamos mais sensíveis às orientações da escola, para poder estar com ela e não contra ela.
Imagine que o seu educando lhe apresenta o seguinte algoritmo para efectuar a divisão anterior:
O importante é que a divisão seja realizada, independentemente da técnica utilizada para o efeito. Aliás, o ideal seria o aluno descobrir a sua própria técnica para efectuar uma divisão. Neste caso, sem dúvida, teríamos de estar satisfeitos, pois seria um sinal de que se tenha apropriado do conceito de divisão.
O apoio dos pais é sempre uma mais-valia no desenvolvimento da criança mas, se não estiver sincronizado com a escola, deixa de ser apoio e passa a ser uma menos-valia. Portanto, é necessário que estejamos mais sensíveis às orientações da escola, para poder estar com ela e não contra ela.
Imagine que o seu educando lhe apresenta o seguinte algoritmo para efectuar a divisão anterior:
Esta poderá ser uma outra técnica para aqueles menos desenvoltos no domínio da tabuada. Assim, o aluno pode ir construindo o quociente de acordo com a sua capacidade de cálculo mental, alongando ou reduzindo o algoritmo de acordo com as suas capacidades.
De que forma interpretaria o algoritmo para poder ajudar o seu educando a fazer a seguinte divisão: 8275,26:7,23?
De que forma interpretaria o algoritmo para poder ajudar o seu educando a fazer a seguinte divisão: 8275,26:7,23?
1 comentário:
oi gostei muito desse seu post que até me inspirou a escrever tbm..
dá uma olhada lá no meu blog
http://origamimat.blogspot.com
Enviar um comentário