Já são muitas as actividades económicas que recorrem a este ramo da matemática tendo em vista maior rendibilidade nas suas acções. É o exemplo do vendedor ambulante que pretende visitar todos os seus clientes fazendo o menor percurso possível, a distribuição do correio, ou a elaboração do plano do circuito das carreiras urbanas de uma cidade.
Esta nova área da matemática tem vindo a ganhar importância devido ao seu enorme potencial de aplicações. No entanto, é pena que a escola ainda não lhe tenha reconhecido essa importância para a incluir nos seus currículos de escolaridade obrigatória. Assim, para além do gozo pessoal que se pode ter na descoberta da solução do desafio do envelope, importa saber também de que forma se poderá sistematizar o conhecimento para que rapidamente se possa decidir sobre a possibilidade ou não da resolução de qualquer figura.
Fazendo uma análise um pouco mais cuidada sobre esta situação damos conta que, ao traçar um circuito ininterrupto, quando se chega a um vértice (ponto) é necessário sair de lá. Então, se a todos os vértices afluírem um número par de arestas (linhas), é possível a sua resolução, uma vez que em cada vértice há uma entrada e uma saída. Mesmo que se escolha um vértice para partir, desde que ele seja par, fica garantida uma aresta para a chegada, o que se conclui que o vértice de partida também terá que ser o de chegada.
Pode, no entanto, ainda ser traçado um circuito ininterrupto com partida num vértice e com chegada noutro vértice. Neste caso, os vértices de partida e chegada terão de ser ímpares, ou seja, concorrem nele um número ímpar de arestas, em que, a aresta que não tem par serve de partida ou de chegada. Portanto, ainda há a possibilidade da figura ter vértices ímpares (pontos onde afluem um número ímpar de linhas) mas, neste caso terão de ser dois.
Reúnem-se, agora, as condições para opinar sobre quais as pontes que deveriam ir abaixo de forma a que os habitantes de Königsberg pudessem, nos seus passeios, visitar todas elas uma só vez. Claro que se não houver problemas de orçamento poder-se-ia pensar antes na construção de novas pontes. Não quererá dar uma sugestão onde poderá ser construída uma ponte para poder satisfazer as pretensões dos habitantes daquela cidade?
Voltando ao desfio do envelope, já poderemos dar uma opinião sobre a sua resolução: por que razão não é possível traçar um circuito ininterrupto, de modo a obter o envelope fechado?
4 comentários:
Excelente artigo! Apenas deixo aqui a sugestão da interactividade a este propósito, que pode ser um complemento interessante:
http://www.aulademate.com/contentid-200.html
5*
BLOG MEME BOM !
BJINHO'
adorei o artigo sobre grafos. Estou lendo e anotando tudo o que se refira ao assunto (que é muito pouco divulgado) e como estou preparando o mesmo para tese e ainda não havia entrado neste blog, agradeço a feliz conincidência.
Marilia Dall Asta
Gostei muito de artigo sobre grafos e espero ter a oportunidade de utiliza-lo como comentário em meu trabalho de doutorado que será sobre estudo da teoria de grafos aplicável ao ensino fundamental e médio
Marilia Dall'Asta
Enviar um comentário